Preview

Scientific and Technical Libraries

Advanced search

Assesment of Rospatent open data quality within the context of integration with national current research information systems

https://doi.org/10.33186/1027-3689-2022-12-15-34

Abstract

Current Research Information Systems (CRIS) are to aggregate data on organizational research projects and their funding, on employers’ publications and intellectual property subject matters. The scientometric analysis is based on CRIS data to assess research output and innovative potential of organizations, and to make management solutions. The early loading of quality and reliable information is the most important task for CRIS. The Rospatent open data that allow for automated processing based on free (free of charge) licensing makes the potential source for data on intellectual property subject matters (patent and government registration certificates) for national CRIS. The studies evidence that despite publishing OD in machine-readable formats, their practical application is impeded by incorrect, incomplete and uncoordinated entries. Therefore, before loading. Rospatent OD have to be assessed for quality and to be improved, if possible. As for today, Rospatent OD quality is assessed by several criteria: accessibility, metadata completeness, feedback. However, at the content level, the open data have not been assessed. The purpose of the article is to evaluate the internal quality of Rospatent OD sets including information on inventions, utility models, industrial designs, computer programs, databases, circuit layouts, within the context of OD integration in CRIS systems. The quality is assessed in several characteristics: completeness, accuracy, consistency, expedience, and relevancy. The study has revealed incomplete, inaccurate and uncoordinated entries.

About the Author

V. A. Zelepukhina
V. N. Tatishchev Astrakhan State University
Russian Federation

Victoria A. Zelepukhina – Cand. Sc. (Engineering), Senior Researcher

Astrakhan



References

1. Intellektual`naia Sistema Tematicheskogo Issledovaniia Naukometricheskikh danny`kh. URL: https://istina.msu.ru (data obrashcheniia: 18.03.2022).

2. SciAct – informatcionno-analiticheskaia sistema monitoringa i uchyota nauchnoi` deiatel`nosti. URL: https://sciact.ru (data obrashcheniia: 18.03.2022).

3. Informatcionno-analiticheskaia sistema «Rezul`taty` nauchnoi` deiatel`nosti». URL: https://science.asu.edu.ru (data obrashcheniia: 18.03.2022).

4. Azeroual O., Saake G., Abuosba M., Schöpfel J. Quality of Research Information in RIS Databases: A Multidimensional Approach // Business Information Systems. BIS 2019. Lecture Notes in Business Information Processing. 2019. Vol. 353. P. 337–349. URL: https://doi.org/10.1007/978-3-030-20485-3_26.

5. Azeroual O., Schöpfel J. Quality Issues of CRIS Data: An Exploratory Investigation with Universities from Twelve Countries // Publications. 2019. URL: https://doi.org/10.3390/publications7010014 (data obrashcheniia: 02.11.2022).

6. GOST R ISO 8000-2-2019. Kachestvo danny`kh. Chast` 2. Slovar`. Moskva : Standartinform, 2019. 12 с.

7. Vasenin V. A., Afonin S. A., Zenzinov A. A., Lunev K. V., Shachnev D. A. Mehanizmy` sistemy` «ISTINA» dlia intellektual`nogo analiza sostoianiia i stimulirovaniia hoda vy`polneniia proektov v sfere nauki i vy`sshego obrazovaniia // Nauchny`i` servis v seti Internet. 2019. № 21. S. 210–221. URL: http://doi.org/10.20948/abrau-2019-48.

8. Otkry`ty`e danny`e Rospatenta. URL: https://rospatent.gov.ru/opendata (data obrashcheniia: 18.03.2022).

9. Otkry`ty`e reestry`. URL: https://new.fips.ru/registers-web/ (data obrashcheniia: 18.03.2022).

10. Usloviia ispol`zovaniia otkry`ty`kh danny`kh Rospatenta / Otkry`taia licenziia. URL: https://rospatent.gov.ru/content/uploadfiles/opendata-terms-of-use.docx (data obrashcheniia: 18.03.2022).

11. Chesnokov M. Iu. Poisk anomalii` v zadache povy`sheniia kachestva otkry`ty`kh danny`kh // Problemy` upravleniia. 2019. № 3. S. 53–62. URL: https://doi.org/10.25728/pu.2019.3.6.

12. Sadiq S., Indulska M. Open data: Quality over quantity // International Journal of Information Management. 2017. Vol. 37 (3). P. 150–154. URL: https://doi.org/10.1016/j.ijinfomgt.2017.01.003.

13. Torchiano M., Vetrò A., Iuliano F. Preserving the benefits of Open Government Data by measuring and improving their quality: an empirical study // 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC). 2017. Vol. 1. P. 144–153. URL: https://doi.org/10.1109/COMPSAC.2017.192.

14. Vetrò A., Canova L., Torchiano M., Minotas C. O., Iemma R., Morando F. Open data quality measurement framework: Definition and application to Open Government Data // Government Information Quarterly. 2016. Vol. 33 (2). P. 325–337. URL: http://doi.org/10.1016/j.giq.2016.02.001.

15. Rula A., Maurino A., Batini C. Data quality issues in linked open data // Data and information quality. 2016. P. 87–112. URL: https://doi.org/10.1007/978-3-319-24106-7_4.

16. Otkry`tost` gosudarstva v Rossii – 2021. URL: https://ach.gov.ru/upload/pdf/Otkrytost2021.pdf (data obrashcheniia: 18.03.2022).

17. Rossii`skii` server Еspacenet. URL: https://ru.espacenet.com (data obrashcheniia: 18.03.2022).

18. Poiskovaia sistema Designview. URL: https://www.tmdn.org/tmdsviewweb/welcome#/dsview (data obrashcheniia: 18.03.2022).

19. Poiskovaia sistema Google Patents. URL: https://patents.google.com (data obrashcheniia: 18.03.2022).

20. Yandex.Patenty` – poisk po patentny`m dokumentam. URL: https://yandex.ru/patents (data obrashcheniia: 18.03.2022).

21. eLIBRARY.RU. Poisk patentov. URL: https://elibrary.ru/patents.asp (data obrashcheniia: 18.03.2022).

22. Ofitcial`ny`e publikatcii FIPS. URL: https://www.fips.ru/publication-web/ (data obrashcheniia: 18.03.2022).

23. Informatcionno-poiskovaia sistema FIPS. URL: https://www.fips.ru/iiss/ (data obrashcheniia: 18.03.2022).

24. Batini C. Data Quality Assessment // Encyclopedia of Database Systems. Boston: Springer, 2009. P. 608–612. URL: https://doi.org/10.1007/978-0-387-39940-9_107.

25. DAMA-DMBOK: Svod znanii` po upravleniiu danny`mi. Vtoroe izdanie / Dama International [per. s angl. G. Agafonova]. Moskva : Olimp-Biznes, 2020. 828 s.

26. Mahanti R. Data Quality: Dimensions, Measurement, Strategy, Management, and Governance. Quality Press, 2019. 526 р.

27. Lee Y. W., Pipino L. L., Funk J. D., Wang R. Y. Journey to data quality. The MIT Press, 2006. 240 р.

28. Sattler Ku. Data Quality Dimensions // Encyclopedia of Database Systems. Boston: Springer, 2009. P. 612–615. URL: https://doi.org/10.1007/978-0-387-39940-9.

29. Gualo F., Rodriguez M., Verdugo J., Caballero I., Piattini M. Data quality certification using ISO/IEC 25012: Industrial experiences // Journal of Systems and Software. 2021. Vol. 176. P. 110938. URL: https://doi.org/10.1016/j.jss.2021.110938.

30. Zhao Y., Gong J., Hu Y., Liu Z., Cai L. Analysis of quality evaluation based on ISO/IEC SQuaRE series standards and its considerations // 2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS). 2017. P. 245–250. URL: https://doi.org/10.1109/ICIS.2017.7960001.

31. Behkamal B., Kahani M., Bagheri E., Jeremic Z. A metrics-driven approach for quality assessment of linked open data // Journal of theoretical and applied electronic commerce research. 2014. Vol. 9 (2). P. 64–79. URL: https://doi.org/10.4067/S0718-18762014000200006.

32. Liu H., Sang Z., Karali S. Approximate quality assessment with sampling approaches // 2019 International Conference on Computational Science and Computational Intelligence (CSCI). 2019. P. 1306–1311. URL: https://doi.org/10.1109/CSCI49370.2019.00244.


Review

For citations:


Zelepukhina V.A. Assesment of Rospatent open data quality within the context of integration with national current research information systems. Scientific and Technical Libraries. 2022;(12):15-34. (In Russ.) https://doi.org/10.33186/1027-3689-2022-12-15-34

Views: 468


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1027-3689 (Print)
ISSN 2686-8601 (Online)