Preview

Scientific and Technical Libraries

Advanced search

The study of thematic communities within the Russian mathematicians co-authorship graphs

https://doi.org/10.33186/1027-3689-2025-1-33-55

Abstract

The author proposes an approach to study special interest communities based on the graph of researchers carrying up studies within the same discipline. The co-authorship graphs are the constructs of scientific collaborations popular owing the initial apparent “acquaintance” of the researchers documented in their articles. Many real networks are characterized by the clusterization, which means that the graph topology, as a real network model, is organized in communities, i. e. subgraphs with more internal connections than external ones. The analysis of communities resulted from co-authorship graph breakdown enables to identify the basic characteristics of the communities, e. g. their type (research thematic lines), number of researchers in the community and their interconnections. In the case of several communities of the same special interest, their consolidation determines the main lines of studies within the scientific discipline and generalized data like the total number of communities and researchers in each consolidated community. In their turn, these data can be used for administrative decisions on stimulating relevant and actionable studies. The author discusses the results of testing of the proposed approach on the basis of Math-Net.Ru portal data. Practically, the testing results prove the need to stimulate the studies in robotics and robotic systems, combustion and explosion, information protection methods and systems. The testing results evidence on the adequacy of the used mathematic models and potentiality of the approach direct transfer to other disciplines. The key is to have the complete and reliable basic bibliographic information on co-authorship within the scientific discipline under the study for the large enough time period.

About the Author

A. A. Pechnikov
Karelian Research Center, Russian Academy of Sciences
Russian Federation

Andrey A. Pechnikov – Dr. Sc. (Engineering), Associate Professor, Leading Researcher, Mathematical Cybernetics Laboratory, Institute for Applied Mathematical Studies

Petrozavodsk



References

1. Yang S. L., Yuan Q. L., Dong J. H. Are Scientometrics, Informetrics, and Bibliometrics Different? // Data Science and Informetrics. 2020. № 1. P. 50–72.

2. Kalachikhin P. Combined Methods for Forecasting Scientific Achievements // Scientific and Technical Information Processing. 2021. Vol. 48, № 4. P. 231–238

3. Hazra R. et al. Modeling interdisciplinary interactions among physics, mathematics and computer science // Journal of Physics: Complexity. 2023. Vol. 4, № 4. P. 045001.

4. Leydesdorff L., Rafols I. A global map of science based on the ISI subject categories // Journal of the American Society for Information Science and Technology. 2009. Vol. 60, № 2. P. 348–362.

5. Mil`man B., Zhurkovich I. Analitika i bioanalitika na kartakh nauki // Analitika. 2013. № 2. S. 34–41.6.

6. Milman B. L., Gavrilova Y. A. Analysis of citation and co-citation in chemical engineering // Scientometrics. 1993. Vol. 27. P. 53–74.

7. Garskova I. M. Setevoi` analiz istoriografii: dinamika formirovaniia regional`ny`kh centrov istoricheskoi` informatiki // Istoricheskaia informatika. 2017. № 3. S. 94–115.

8. Author, 2023.

9. Basarab M. A. i dr. Issledovanie struktury` grafa nauchnogo soavtorstva metodami analiza sotcial`ny`kh setei` // Voprosy` kiberbezopasnosti. 2017. № 1 (19). S. 31–36.

10. Vasil`eva E. E. i dr. Vliianie kollaboratcii` na harakteristiki grafa soavtorstva v oblasti fiziki v Rossii // Kratkie soobshcheniia po fizike FIAN. 2020. № 12. S. 47–54.

11. Ivanov O. V. i dr. Topologiia grafa soavtorstva v oblasti fiziki v Rossii // Kratkie soobshcheniia po fizike FIAN. 2020. № 8. S. 9–16.

12. Bredihin S. V., Liapunov V. M., Shcherbakova N. G. Struktura i parametry` nevzveshennoi` seti soavtorstva na osnove danny`kh BD REPEC // Problemy` informatiki. 2021. T. 3. № 52. S. 56–67.

13. Bredihin S. V., Liapunov V. M., Shcherbakova N. G. Ranzhirovanie uzlov vzveshennoi` seti soavtorstva: analiz danny`kh BD REPEC // Problemy` informatiki. 2021. T. 4, № 53. S. 67–83.

14. Johal J., Loukas M., Oskouian R. J., Tubbs R. S. “Political co-authorships” in medical science journals // Clinical Anatomy. 2017. Vol. 30, № 6. P. 831–834.

15. Seltzer A. J., Daniel S. H. Co-authorship in economic history and economics: Are we any different? // Explorations in Economic History. 2018. № 69. P. 102–109.

16. Prochko A. L., Tishchenko V. I. Osobennosti kollaboratcii` uchyony`kh v kollektivakh razlichny`kh tematik // Sistemny`e issledovaniia. Metodologicheskie problemy`. Ezhegodnik 2019–2020. 2020. S. 249–273.

17. Newman M. E. J. The structure of scientific collaboration networks // Proceedings of the National Academy of Sciences of the USA. 2001. Vol. 98, № 2. P. 404–409.

18. Bedi P., Sharma C. Community detection in social networks // Wiley interdisciplinary reviews: Data mining and knowledge discovery. 2016. Vol. 6, № 3. P. 115–135.

19. Serban M. Exploring modularity in biological networks // Philosophical Transactions of the Royal Society B. 2020. Vol. 375. P. 20190316.

20. Newman M. E., Girvan M. Finding and evaluating community structure in networks // Physical Review E. 2004. Vol. 69, № 2. P. 026113.

21. Avtor, 2022


Review

For citations:


Pechnikov A.A. The study of thematic communities within the Russian mathematicians co-authorship graphs. Scientific and Technical Libraries. 2025;(1):33-55. (In Russ.) https://doi.org/10.33186/1027-3689-2025-1-33-55

Views: 202


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1027-3689 (Print)
ISSN 2686-8601 (Online)