Preview

Scientific and Technical Libraries

Advanced search

Classifying the UN SDGs research: The problems, approaches and prospects for generative artificial intelligence

https://doi.org/10.33186/1027-3689-2025-1-56-78

Abstract

The subject classification of research publications enhances navigation in the flow of science literature, enables bibliometric analysis, multitier assessment of research performance. The universal character of the UN agenda of sustainable development and importance of sustainable development goals (SDGs) and scientific research to achieve them, and the complex and multiaspect SDGs stir high interest of bibliographers, scientometrics community, international science databases, in the problem of correlating science publications and SDGs. The Web of Science, Scopus, Dimensions, as well as the individual researchers apply various approaches to classifying the articles on SDGs, and these classifications have their strengths and weaknesses. The differences in the resulting classifications calls for the analysis and improvement of methods and approaches. The evolving generative artificial intelligence technologies and big language models open up new possibilities for the subject classification of science texts including those related to the UN SDGs. The authors analyze the methods used to classify publications as SDG-related, and demonstrate the applicability of big language models as exemplified by ChatGPT

About the Authors

I. V. Selivanova
Russian Research Institute of Economics, Politics and Law in Science and Technology
Russian Federation

Irina V. Selivanova – Researcher, Scientometrics and Scientific Communications Laboratory

Moscow



P. Y. Blinov
Russian Research Institute of Economics, Politics and Law in Science and Technology
Russian Federation

Pavel Y. Blinov – Senior Researcher, Scientometrics and Scientific Communications Laboratory

Moscow



A. V. Malysheva
Russian Research Institute of Economics, Politics and Law in Science and Technology
Russian Federation

Alexandra V. Malysheva – Junior Researcher, Scientometrics and Scientific Communications Laboratory

Moscow



D. V. Kosyakov
Institute of Computational Mathematics and Mathematical Geophysics, Russian Academy of Sciences Siberian Branch
Russian Federation

Denis V. Kosyakov – Researcher, Information Technologies and Artificial Intelligence Laboratory, Institute of Computational Mathematics and Mathematical Geophysics

Novosibirsk



References

1. United Nations Environment Programme (UNEP) // Year Book of International Cooperation on Environment and Development / ed. Bergesen H.O., Parmann G., Thommessen O. B. : Routledge, 1998. 3 p.

2. Leal Filho W. et al. Towards a common future: revising the evolution of universitybased sustainability research literature // International Journal of Sustainable Development & World Ecology. Taylor & Francis. 2021. Vol. 28, № 6. P. 503–517. https://doi.org/10.1080/13504509.2021.1881651.

3. Koptiug V. A. Povestka dnia na KHKHI vek. Kontceptciia ustoi`chivogo razvitiia i sotcial`no-politicheskie dvizheniia // Nauka iz pervy`kh ruk. 2011. № 2 (38). P. 36–51.

4. Larionova M. V. Vy`zovy` dostizheniia TCelei` razvitiia ty`siacheletiia (TCRT) // Vestneyk Mezhdunarodny`kh Organizatcii`: Obrazovanie, Nauka, Novaia E`konomika. 2020. Vol. 15, № 1. P. 155–176. https://doi.org/10.17323/1996-7845-2020-01-07.

5. Parotto E., Pablos-Méndez A. From MDGs to SDGs // Global Health Essentials / ed. Raviglione M. C. B. et al. Cham: Springer International Publishing, 2023. P. 463–468. https://doi.org/10.1007/978-3-031-33851-9_71.

6. TCeli ustoi`chivogo razvitiia: otchyot po Rossii. URL: https://icss.ru/vokrugstatistiki/tseli-ustoychivogo-razvitiya-otchet-po-rossii (дата обращения: 20.12.2024).

7. Dobrovol`ny`i` natcional`ny`i` obzor. URL: https://rosstat.gov.ru/folder/94692 (data obrashcheniia: 20.12.2024).

8. Vandy`sheva A. i dr. 2020–2030: Desiatiletie dei`stvii` dlia TCUR v Rossii. Vy`zovy` i resheniia / pod red. N. Rahimovoi`. Moskva, 2020. 142 s.

9. Alfirević N., Malešević Perović L., Mihaljević Kosor M. Productivity and Impact of Sustainable Development Goals (SDGs)-Related Academic Research: A Bibliometric Analysis:

10. // Sustainability. Multidisciplinary Digital Publishing Institute. 2023. Vol. 15, № 9. P. 7434. https://doi.org/10.3390/su15097434.

11. Sianes A. et al. Impact of the Sustainable Development Goals on the academic research agenda. A scientometric analysis // PLoS One. 2022. Vol. 17, № 3. P. e0265409. https://doi.org/10.1371/journal.pone.0265409.

12. Filho W.L. et al. The role of universities in accelerating the sustainable development goals in Europe // Sci Rep. Nature Publishing Group2024. Vol. 14, № 1. P. 15464. https://doi.org/10.1038/s41598-024-65820-9.

13. Fonseca L. M., Domingues J. P., Dima A. M. Mapping the Sustainable Development Goals Relationships: 8 // Sustainability. Multidisciplinary Digital Publishing Institute. 2020. Vol. 12, № 8. P. 3359. https://doi.org/10.3390/su12083359.

14. Armitage C. S., Lorenz M., Mikki S. Mapping scholarly publications related to the Sustainable Development Goals: Do independent bibliometric approaches get the same results? // Quantitative Science Studies. 2020. Vol. 1, № 3. P. 1092–1108. https://doi.org/10.1162/qss_a_00071.

15. Jayabalasingham B. et al. Identifying research supporting the United Nations Sustainable Development Goals. Elsevier Data Repository, 2019. Vol. 1. https://doi.org/10.17632/87txkw7khs.1.

16. Search Queries for «Mapping Research Output to the Sustainable Development Goals (SDGs)». URL: https://aurora-network-global.github.io/sdg-queries/ (Accessed: 21.12.2024

17. Duran-Silva N. et al. A controlled vocabulary defining the semantic perimeter of Sustainable Development Goals. Zenodo, 2019. https://doi.org/10.5281/zenodo.3567769.

18. Kashnitsky Y. et al. Evaluating approaches to identifying research supporting the United Nations Sustainable Development Goals // Quantitative Science Studies. 2024. Vol. 5, № 2. P. 408–425. https://doi.org/10.1162/qss_a_00304

19. Improving the Scopus and Aurora queries to identify research that supports the United Nations Sustainable Development Goals (SDGs) 2021. URL: https://elsevier.digitalcommonsdata.com/datasets/9sxdykm8s4/4 (Accessed: 17.12.2024).

20. SDG Research Mapping Initiative – SEO Metadata // www.elsevier.com. URL: https://www.elsevier.com/about/sustainability/sdg-research-mapping-initiative (Accessed: 20.12.2024).

21. Sadovskaia L. L. i dr. Obrabotka tekstov na estestvennom iazy`ke: obzor publikatcii` // Iskusstvenny`i` intellekt i priniatie reshenii`. 2021. № 3. P. 66–86. https://doi.org/10.14357/20718594210306/

22. Selivanova E. V. et al. Expert, Journal, and Automatic Classification of Full Texts and Annotations of Scientific Articles // Automatic Documentation and Mathematical Linguistics. 2021. Vol. 55, № 4. P. 178–189. https://doi.org/10.3103/S0005105521040075.

23. The South African SDG Hub. URL: https://sasdghub.up.ac.za/home/ (Accessed: 21.12.2024).

24. Hook D. W., Porter S. J., Herzog C. Dimensions: Building Context for Search and Evaluation // Front. Res. Metr. Anal. Frontiers. 2018. Vol. 3. https://doi.org/10.3389/frma.2018.00023.

25. Sustainable Development Goals Classification. URL: https://www.digitalscience.com/resource/sustainable-development-goals-classification/ (Accessed: 17.12.2024).

26. Juergen Wastl et al. Contextualizing Sustainable Development Research: Using Dimensions to explore the global landscape of research on Sustainable Development Goals. 2020. URL: https://www.digital-science.com/resource/contextualizing-sustainabledevelopment-research/ (Accessed: 17.12.2024).

27. Yelmen I., Gunes A., Zontul M. Multi-Class Document Classification Using Lexical Ontology-Based Deep Learning // Applied Sciences. 2023. Vol. 13, № 10. P. 6139. https://doi.org/10.3390/app13106139.

28. Li Q. et al. A Survey on Text Classification: From Traditional to Deep Learning // ACM Trans. Intell. Syst. Technol. 2022. Vol. 13, № 2. P. 1–41. https://doi.org/10.1145/3495162.

29. Discover and analyse research in context of the United Nations Sustainable Development Goals. URL: https://www.dimensions.ai/webinars/discover-and-analyseresearch-in-context-of-the-united-nations-sustainable-development-goals/ (Accessed: 17.12.2024).

30. LaFleur M. T. Art is long, life is short: An SDG Classification System for DESA Publications: 159 // Working Papers. United Nations, Department of Economics and Social Affairs, 2019.

31. LaFleur M. T. SDGClassy: Shell. 2022. URL: https://github.com/SeaCelo/SDGclassy (Accessed: 17.12.2024).

32. Traag V. A., Waltman L., Van Eck N. J. From Louvain to Leiden: guaranteeing wellconnected communities // Sci Rep. 2019. Vol. 9. № 1. P. 5233. https://doi.org/10.1038/s41598-019-41695-z.

33. Boyack K. W., Klavans R. A comparison of large-scale science models based on textual, direct citation and hybrid relatedness // Quantitative Science Studies. 2020. Vol. 1, № 4. P. 1570–1585. https://doi.org/10.1162/qss_a_00085.

34. A more sustainable future for all: Introducing the UN Sustainable Development Goals in InCites. URL: https://clarivate.com/academia-government/blog/a-more-sustainable-futurefor-all-introducing-the-un-sustainable-development-goals-in-incites/ (Accessed: 17.12.2024).

35. Törnberg P. Large Language Models Outperform Expert Coders and Supervised Classifiers at Annotating Political Social Media Messages // Social Science Computer Review. SAGE Publications Inc, 2024. P. 08944393241286471. https://doi.org/10.1177/08944393241286471.

36. Stavropoulos A., Crone D., Grossmann I. Shadows of wisdom: Classifying meta-cognitive and morally-grounded narrative content via Large Language Models. OSF, 2023. https://doi.org/10.31234/osf.io/x2f4a.

37. Flores Villanueva D. Application of neural language models for research article classification into sustainable development goals: Master of Science in Engineering. Pontificia Universidad Católica de Chile, 2022. https://doi.org/10.7764/tesisUC/ING/66404.

38. Yin H., Aryani A., Nambiar N. Evaluating the Performance of Large Language Models for SDG Mapping (Technical Report): arXiv:2408.02201. arXiv, 2024. https://doi.org/10.48550/arXiv.2408.02201.

39. Raman R. et al. ChatGPT: Literate or intelligent about UN sustainable development goals? // PLOS ONE. Public Library of Science. 2024. Vol. 19, № 4. P. e0297521. https://doi.org/10.1371/journal.pone.0297521.

40. Kosyakov D. V. Anatomy of the Abnormal Growth in the Number of Russian Publications in Conference Proceedings in Scopus // Sci. Tech. Inf. Proc. 2023. Vol. 50, № 2. P. 96–108. https://doi.org/10.3103/S0147688223020028.

41. Kosyakov D., Guskov A. Disciplinary and institutional shifts: decomposing deviations in the country-level proportions of conference papers in Scopus // Scientometrics. 2024. Vol. 129. P. 1697–1717. https://doi.org/10.1007/s11192-024-04943-2.


Review

For citations:


Selivanova I.V., Blinov P.Y., Malysheva A.V., Kosyakov D.V. Classifying the UN SDGs research: The problems, approaches and prospects for generative artificial intelligence. Scientific and Technical Libraries. 2025;(1):56-78. (In Russ.) https://doi.org/10.33186/1027-3689-2025-1-56-78

Views: 376


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1027-3689 (Print)
ISSN 2686-8601 (Online)