The model of communication with artificial intelligence as a methodological approach to prompt creation and evaluation
https://doi.org/10.33186/1027-3689-2025-7-142-163
Abstract
In the context of digital transformation of the library sphere and gradual implementation of artificial intelligence technologies into library practice, the challenge of effective interaction with neural networks and high-quality promptsmithing is increasingly relevant. The author proposes his model of communication with artificial intelligence, based on the principles of Benevolence, Rationality, Refinement, and Epistemology, and demonstrates its practical application and effectiveness. The model is developed as a methodological approach to prompt engineering in library practice. The study methodology comprised model development, engineering of the series of prompts of varying “strength” based on its principles, and testing with 6 neural network models to accomplish the task of bibliographic data analysis. The testing results demonstrate direct correlation between the quality of neural network response and the level of prompt sophistication based on the proposed model. The practical significance of the study lies in offering methodological framework for improving the efficiency and quality of interaction between library specialists and artificial intelligence, as well as the possibility of using the model to develop practical recommendations and educational programs on prompt engineering in the library sphere.
About the Author
A. V. KovalevskyBelarus
Aleksey V. Kovalevsky – Master of Science (Pedagogy), postgraduate student, Belarus State University of Culture and Arts, Science Library; Belarus National Technological University
Minsk
References
1. Dang H., Mecke L., Lehmann F., Goller S., Buschek D. How to prompt? Opportunities and challenges of zero- and few-shot learning for human-AI interaction in creative applications of generative models // arXiv preprint. 2022. URL: https://arxiv.org/abs/2209.01390 (access: 15.01.2025).
2. Kaddour J., Harris J., Mozes M., Bradley H., Raileanu R., McHardy R. Challenges and Applications of Large Language Models // arXiv preprint. 2023. URL: https://arxiv.org/abs/2307.10169 (access: 14.01.2025).
3. Zihao Z., Wallace E., Feng S., Klein D., Singh S. Calibrate Before Use: Improving Few-shot Performance of Language Models // Proceedings of the 38th International Conference on Machine Learning, PMLR 139. 2021. URL: https://proceedings.mlr.press/v139/zhao21c.html (access: 21.01.2024).
4. Webson A., Pavlick E. Do Prompt-Based Models Really Understand the Meaning of Their Prompts? // Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, 2022. С. 2300–2344.
5. Knoth N., Tolzin A., Janson A., Leimeister J. M. AI literacy and its implications for prompt engineering strategies // Computers and Education: Artificial Intelligence. 2024. Т. 6. URL: https://doi.org/10.1016/j.caeai.2024.100225 (access: 22.01.2025).
6. Yin Z., Wang H., Horio K., Kawahara D., Sekine S. Should We Respect LLMs? A Cross-Lingual Study on the Influence of Prompt Politeness on LLM Performance // The 2nd Workshop on Social Influence in Conversations (SICon): Proceedings of the Workshop. Association for Computational Linguistics, 2024. С. 9–35.
7. Piperski A. Ch. Vezhlivost` v kommunikatcii mezhdu chelovekom i iskusstvenny`m intellektom // Slovo.ru: baltii`skii` akcent. T. 15, № 4. S. 89–98.
8. Bass B. M., Waldman D. A., Avolio B. J., Bebb B. J. Transformational Leadership and the Falling Dominoes Effect // Group & Organization Studies. 1987. Т. 12, № 1. С. 73–87.
9. Mayer D. M., Kuenzi M., Greenbaum R., Bardes M., Salvador R. How low does ethical leadership flow? Test of a trickle-down model // Organizational Behavior and Human Decision Processes. 2009. Т. 108, № 1. С. 1–13.
10. Foulk T., Woolum A., Erez A. Catching Rudeness Is Like Catching a Cold: The Contagion Effects of Low-Intensity Negative Behaviors // Journal of Applied Psychology. 2016. Т. 101, № 1. С. 50–67.
11. Miehling E., Nagireddy M., Sattigeri P., Daly E. M., Piorkowski D., Richards J. T. Language Models in Dialogue: Conversational Maxims for Human-AI Interactions // Findings of the Association for Computational Linguistics: EMNLP. 2024. С. 14420–14437.
12. Orme M., Yu Y., Tan Z. How Much do Robots Understand Rudeness? Challenges in Human-Robot Interaction // Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024). Torino: ELRA Language Resource Association, 2024. С. 8247–8257.
13. White J., Fu Q., Hays S., Sandborn M., Olea C., Gilbert H., Schmidt D. C. A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT // arXiv preprint. 2023. URL: https://arXiv:2302.11382 (access: 14.01.2025).
14. Prompting Techniques. URL: https://www.promptingguide.ai/techniques (access: 22.01.2025).
15. Li X., Dong G., Jin J., Zhang Y., Zhou Y., Zhu Y., Zhang P., Dou Z. Search-o1: Agentic Search-Enhanced Large Reasoning Models // arXiv preprint. 2025. URL: https://arxiv.org/abs/2501.05366 (access: 22.01.2025).
16. Liu R., Geng J., Peterson J. C., Sucholutsky I., Griffiths T. L. Large Language Models Assume People are More Rational than We Really are // arXiv preprint. 2024. URL: https://arxiv.org/abs/2406.17055 (access: 22.01.2025).
17. Lewis P., Perez E., Piktus A., Petroni F., Karpukhin V., Goyal N., Küttler H., Lewis M., Yih W., Rocktäschel T., Riedel S., Kiela D. Retrieval-augmented generation for knowledgeintensive NLP tasks // Proceedings of the 34th International Conference on Neural Information Processing Systems (NIPS '20). 2020. С. 9459–9474.
18. Jadallah A. K., Mihus I., Svyrydiuk N., Zhyvko Z. Nature and purpose of artificial intelligence. Political, legal, and economic challenges in the 21st century // CLÍO: Revista de Revista de Historia, Ciencias Humanas y pensamiento crític. 2024. № 8. С. 306–320. DOI https://doi.org/10.5281/zenodo.12600350.
19. Bassano C., Caputo F., Barile P., Piciocchi P. Empowering service systems through Intelligence Augmentation (IA) in digital society // ITM Web of Conferences. 2024. Т. 62. DOI https://doi.org/10.1051/itmconf/20246205003.
20. Claude. URL: https://claude.ai/ (access: 13.01.2025).
21. ChatGPT. URL: https://chatgpt.com/ (access: 13.01.2025).
22. Gemini. URL: https://gemini.google.com/ (access: 13.01.2025).
23. Microsoft Copilot. URL: https://copilot.microsoft.com/ (access: 13.01.2025).
24. Mistral AI. URL: https://mistral.ai/ (access: 13.01.2025).
25. YandexGPT 4. URL: https://ya.ru/ai/gpt-4 (access: 13.01.2025).
26. Google Colab. URL: https://colab.research.google.com/ (access: 13.01.2025).
Review
For citations:
Kovalevsky A.V. The model of communication with artificial intelligence as a methodological approach to prompt creation and evaluation. Scientific and Technical Libraries. 2025;(7):142-163. (In Russ.) https://doi.org/10.33186/1027-3689-2025-7-142-163