Analyzing use of recommendation systems in the library information sphere and related domains
https://doi.org/10.33186/1027-3689-2025-11-139-160
Abstract
Within the framework of the R&D project theme: “Open access in research and information activity and development of open archive multifunctional system consistent with open license mechanisms and artificial intelligence elements”, the RNPLS&T specialists explore into the use of recommendation systems in the library information sphere and related domains. The purpose of the study is to find key approaches toward development of recommendation systems and to forecast the possible prospects for them. The author applies the methods of content analysis of relevant publications on recommendation systems, and analyzes the functionality of recommendation systems in the library information practice. She describes various approaches to recommendation systems in national and foreign practices in various spheres, defines key technologies of recommendation systems use in libraries, i. e collaborative and content filtration. The author concludes on the viability of the content filtration. The options for linguistic tools in recommendation systems with content filtration are examined, the corresponding options are suggested for the library and information sphere. The tasks for recommendation systems are formulated, the promising vectors for recommendation service are outlined. The suggestions for recommendation systems may be applied for building recommendation services in the library information practice.
Keywords
About the Author
E. M. ZaitsevaRussian Federation
Ekaterina M. Zaitseva – Cand. Sc. (Philology), Leading Researcher, Head Information and Linguistic Support Group
Moscow
References
1. Strategiia razvitiia bibliotechnogo dela v Rossii`skoi` Federatcii na period do 2030 goda (utverzhdena rasporiazheniem Pravitel`stva Rossii`skoi` Federatcii ot 13 marta 2021 g. № 608-r). URL: https://www.garant.ru/products/ipo/prime/doc/400356337 (data obrashcheniia: 04.08.2025).
2. Ricci F., Rokach L., Shapira B. Recommender Systems : Techniques, Applications, and Challenges // Recommender Systems Handbook : Third Edition. New York : Springer, 2022. Pp. 1–35. URL: https://link.springer.com/chapter/10.1007/978-1-0716-2197-4_1 (accessed: 04.08.2025).
3. Goldberg D., Nichols D., Oki B. M., Terry D. Using Collaborative Filtering to Weave an Information Tapestry // Communications of the ACM. 1992. Vol. 35 (12). Pp. 61–70. URL: https://www.sci-hub.ru/10.1145/138859.138867?ysclid=mf41n6nn1z92465411 (accessed: 04.08.2025).
4. Rich E. User Modelling Via Stereotypes // Cognitive Science. 1979. Vol. 3 (4). Pp. 329–354. URL: https://www.sci-hub.ru/10.1207/s15516709cog0304_3 (accessed: 04.08.2025).
5. Schrage M. Recommendation Engines. Cambridge, Massachusetts : The MIT Press, 2020. URL: https://oceanofpdf.com/authors/michael-schrage/pdf-epub-recommendation-enginesdownload (accessed: 04.08.2025).
6. Aggarwal C. C. Recommender Systems : The Textbook. Springer : New York, 2016. URL: https://link.springer.com/book/10.1007/978-3-319-29659-3 (accessed: 04.08.2025).
7. Recommender Systems Handbook : Third Edition. New York : Springer, 2022. URL: https://link.springer.com/book/10.1007/978-1-0716-2197-4 (accessed: 04.08.2025).
8. Recommender-Systems.com (RC_c) : [сайт]. URL: https://recommender-systems.com (accessed: 04.08.2025).
9. Schafer J. B., Frankowski D., Herlocker J., Sen S. Collaborative Filtering Recommender Systems // The Adaptive Web. Berlin : Springer, 2007. Pp. 291–324. URL: https://link.springer.com/chapter/10.1007/978-3-540-72079-9_9 (accessed: 04.08.2025).
10. Koren Y., Rendle S., Bell R. Advances in Collaborative Filtering // Recommender Systems Handbook : Third Edition. New York : Springer, 2022. PP. 91–142. URL: https://link.springer.com/chapter/10.1007/978-1-0716-2197-4_3 (accessed: 04.08.2025).
11. Pazzani M. J., Billsus D. Content-Based Recommendation Systems // The Adaptive Web. Berlin : Springer, 2007. Pp. 325–341. URL: https://link.springer.com/chapter/10.1007/978-3-540-72079-9_10 (accessed: 04.08.2025).
12. Musto C., Gemmis M. de, Lops P., Narducci F., Semeraro G. Semantics and Content-Based Recommendations // Recommender Systems Handbook : Third Edition. New York : Springer, 2022. PP. 251–298. URL: https://link.springer.com/chapter/10.1007/978-1-0716-2197-4_7 (accessed: 04.08.2025).
13. Arazy O., Kumar N., Shapira B. Improving Social Recommender Systems // IT Professional. Vol. 11 (4). Pp. 38–44. URL: https://www.researchgate.net/publication/224567114_Improving_Social_Recommender_Systems (accessed: 04.08.2025).
14. Bobadilla J., Ortega F., Hernando A., Gutierrez A. Recommender Systems Survey // Knowledge-Based Systems. 2013. Vol. 46. Pp. 109–132. URL: https://www.scihub.ru/10.1016/j.knosys.2013.03.012 (accessed: 04.08.2025).
15. Smith B. Case-Based Recommendation // The Adaptive Web. Berlin : Springer, 2007. PP. 342–376. URL: https://link.springer.com/chapter/10.1007/978-3-540-72079-9_11 (accessed: 04.08.2025).
16. Burke R. Hybrid Web Recommender Systems // The Adaptive Web. Berlin : Springer, 2007. Pp. 377–408. URL: https://link.springer.com/chapter/10.1007/978-3-540-72079-9_12 (accessed: 04.08.2025).
17. Montaner M., Lopez B., Rosa J. L. de la. A Taxonomy of Recommender Agents on the Internet // Artificial Intelligence Review. 2003. Vol. 19 (4). Pp. 285–330. URL: https://link.springer.com/article/10.1023/a:1022850703159 (accessed: 04.08.2025).
18. Zubchuk E., Arhipkin M., Menshikov D., Karaush A., Mikhaylovskiy N. Lib-SibGMU – A University Library Circulation Dataset for Recommender Systems Development // ResearchGate.net. 2022. URL: https://www.researchgate.net/publication/363052534_LibSibGMU_--_A_University_Library_Circulation_Dataset_for_Recommender_Systems_Developmen (accessed: 04.08.2025).
19. Lavrik O. L., Iucliaevskaia A. V. Rekomendatel`ny`e knizhny`e servisy` v bibliograficheskoi` deiatel`nosti bibliotek // Sfera kul`tury`. 2023. № 3 (13). S. 139–152. URL: https://cyberleninka.ru/article/n/rekomendatelnye-knizhnye-servisy-vbibliograficheskoy-deyatelnosti-bibliotek (data obrashcheniia: 04.08.2025).
20. Kapterev A. I. Praktika ispol`zovaniia rekomendatel`ny`kh sistem v bibliotekakh // Kul`tura : teoriia i praktika. 2024. № 1 (56). URL: https://elibrary.ru/item.asp?id=65607135 (data obrashcheniia: 04.08.2025).
21. BibTip Connecting Knowledge // Karlsruhe Institute of Technology : [сайт]. URL: https://www.kit.edu/kit/english/1838_111.php (accessed: 04.08.2025).
22. Liao I. E., Hsu W. C., Cheng M. S., Chen L. P. A Library Recommender System Based on a Personal Ontology Model and Collaborative Filtering Technique for English Collections // The Electronic Library. 2010. Vol. 28(3). PP. 386–400. URL: https://www.researchgate.net/publication/220677432_A_library_recommender_system_based_on_a_personal_ontology_model_and_collaborative_filtering_technique_for_English_collections (accessed: 04.08.2025).
23. Zhang H., Xiao Y., Bu Z. Personalized Book Recommender System Based on Chinese Library Classification // 14th Web Information Systems and Applications Conference (WISA). 2017. URL: https://www.semanticscholar.org/paper/Personalized-Book-RecommenderSystem-Based-on-Zhang-Xiao/490d19f10e3b271a9c263574390dc8517b3e24be (accessed: 04.08.2025).
24. Middleton S. E., Roure D. de, Shadbolt N. R. Ontology-base Recommender Systems // Handbook on Ontologies. Springer Berlin, 2009. PP. 779–796. URL: https://link.springer.com/chapter/10.1007/978-3-540-92673-3_35 (accessed: 04.08.2025).
25. Karaush A. S. Rekomendatel`ny`e sistemy` v publichny`kh bibliotekakh // Rol` GPNTB SO RAN v razvitii informatcionno-bibliotechnogo obsluzhivaniia v regione : mezhregional`naia nauchno-prakticheskaia konferentciia (g. Novosibirsk, 6–10 oktiabria 2008 g.) : tezisy` docladov. Novosibirsk : GPNTB SO RAN, 2008. S. 70–74.
26. Hasanov V. I., Karaush A. S. Rekomendatel`ny`e sistemy` v avtomatizirovanny`kh bibliotechny`kh informatcionny`kh sistemakh // E`lektronny`e sredstva i sistemy` upravleniia. Materialy` docladov Mezhdunarodnoi` nauchno-prakticheskoi` konferentcii. 2009. № 1. S. 3–7. https://www.elibrary.ru/item.asp?id=23070214 (data obrashcheniia: 26.09.2025).
27. Karaush A. S. Rekomendatel`ny`e sistemy` v publichny`kh bibliotekakh // Bibliosfera. 2009. № 1. S. 41–43. URL: https://www.elibrary.ru/item.asp?id=11720014 (data obrashcheniia: 26.09.2025).
28. Kniazeva A. A., Kolobov O. S., Turchanovskii` I. Iu., Fedotov A. M. Kollaborativnaia fil`tratciia dlia postroeniia rekomendatcii` na osnove danny`kh o zakazakh // Vestneyk Novosibirskogo gosudarstvennogo universiteta. Seriia: Informatcionny`e tekhnologii. 2018. T. 16. № 2. S. 62–69. URL: https://cyberleninka.ru/article/n/kollaborativnaya-filtratsiyadlya-postroeniya-rekomendatsiy-na-osnove-dannyh-o-zakazah (data obrashcheniia: 04.08.2025).
29. Poletaeva Iu. S. Razrabotka setevoi` rekomendatel`noi` sistemy` dlia nauchnotekhnicheskoi` biblioteki IRNITU // Nauchny`e kommunikatcii. Professional`naia e`tika : materialy` IV Vserossii`skoi` nauchno-prakticheskoi` konferentcii s mezhdunarodny`m uchastiem. Omsk, 2019. S. 120–127. URL: https://www.elibrary.ru/item.asp?edn=atwyyr (data obrashcheniia: 04.08.2025).
30. Sozdana nei`roset`, uskoriaiushchaia poisk blizkikh po smy`slu nauchny`kh statei` // TASS Nauka : [sai`t]. URL: https://nauka.tass.ru/nauka/20782819 (data obrashcheniia: 04.08.2025).
31. Kolobov O. S., Kniazeva A. A., Leonova Iu. V., Turchanovskii` I. Iu. Personalizatciia e`lektronny`kh uslug na primere rekomendatel`nogo servisa dlia bibliotek // Informatcionny`e tekhnologii, komp`iuterny`e sistemy` i izdatel`skaia produktciia dlia bibliotek : sbornik docladov Dvadtcat` piatoi` mezhdunarodnoi` konferentcii i vy`stavki «LIBCOM-2021». Moskva, 2022. S. 35–40. URL: https://www.elibrary.ru/item.asp?id=48235290 (data obrashcheniia: 04.08.2025).
32. Shrai`berg Ia. L., Dmitrieva E. Iu., Smirnova O. V., Chervinskaia N. V., Terehova E. S. Razrabotka sistemy` vzaimosviazanny`kh classifikatcii`: sopostavlenie Gosudarstvennogo rubrikatora nauchno-tekhnicheskoi` informatcii i Universal`noi` desiatichnoi` classifikatcii // Nauchny`e i tekhnicheskie biblioteki. 2023. № 11. S. 36–65. https://doi.org/10.33186/1027-3689-2023-11-36-65.
33. Zemskov A. I. Osnovny`e zadachi bibliotek v oblasti bibliometrii // Informatciia i innovatcii. 2017. Spetc. vy`pusk. S. 79–83.
34. Mokhnacheva Iu. V., TCvetkova V. A. Bibliometriia i sovremenny`e nauchny`e biblioteki // Nauchny`e i tekhnicheskie biblioteki. 2018. № 6. S. 51–62. https://doi.org/10.33186/1027-3689-2018-6-51-62.
35. Ivanovskii` A. A. Ob``ektnaia model` sistemy` izbiratel`nogo rasprostraneniia informatcii // Nauchny`e i tekhnicheskie biblioteki. 2019. № 4. S. 61–75. https://doi.org/10.33186/1027-3689-2019-4-61-75.
36. Bazhenov S. R., Balutkina N. A., Stukalova A. A. Kontceptciia novoi` informatcionnopoiskovoi` sistemy` GPNTB SO RAN na osnove IRBIS64+ // Nauchny`e i tekhnicheskie biblioteki. 2023. № 3. S. 80–101. https://doi.org/10.33186/1027-3689-2023-3-80-101.
Review
For citations:
Zaitseva E.M. Analyzing use of recommendation systems in the library information sphere and related domains. Scientific and Technical Libraries. 2025;1(11):139-160. (In Russ.) https://doi.org/10.33186/1027-3689-2025-11-139-160
































