Preview

Scientific and Technical Libraries

Advanced search

Application of Exploratory Data Analysis in bibliometrics: A case study of scientific journals on the “White List”

https://doi.org/10.33186/1027-3689-2025-11-182-202

Abstract

In the context of scientific and technological progress, the level of scientific journal is a key element of the modern national system for assessing research performance. Categorizing scientific journals is one of the primary tasks of bibliometrics, and the constant growth in the volume of data on publications and journals requires credible analysis of the alignment between declared and observed categorization patterns. The purpose of this article is to test the application of Exploratory Data Analysis (EDA) to study the distribution of scientific journals across the “White List” levels and to identify statistical patterns linking a journal's level to its indexing in scientometric databases (DB). The research subject is open data on scientific journals on the “White List”. The study employs statistical approach to analyzing publication data, implemented in the Google Collaboratory digital environment using Python programming language libraries for EDA (Pandas, Matplotlib, Seaborn). The results enabled a quantitative analysis of the alignment between empirical data and the “White List” journal categorization rules, revealing differences in indexing patterns across different journal levels. The practical significance lies in integrating EDA digital technologies into the bibliometric toolkit, opening opportunities for verifying categorization systems and advancing bibliometric methods amid the digitalization of science.

About the Author

N. A. Moiseeva
Omsk State Technical University
Russian Federation

Natalya A. Moiseeva – Cand. Sc. (Pedagogy), Associate Professor, Applied Mathematics and Basic Informatics Chair

Omsk 



References

1. Kotliarov I. D. Problemy` funktcionirovaniia rossii`skoi` sistemy` nauchny`kh publikatcii` i puti ikh resheniia // Obrazovanie i nauka. Izvestiia UrO RAO. 2011. № 1 (80). S. 92–101.

2. Siuntiurenko O. V., Giliarevskii` R. S. Ispol`zovanie metodov naukometrii i sopostavitel`nogo analiza danny`kh dlia upravleniia nauchny`mi issledovaniiami po tematicheskim napravleniiam // Nauchno-tekhnicheskaia informatciia. Ser. 2. 2016. № 12. S. 1–12.

3. Medvedeva O. O., D`iachenko E. L. Bely`e spiski zhurnalov: mezhdunarodny`i` opy`t sostavleniia i rol` v upravlenii naukoi` [Prezentatciia]. 9-ia Mezhdunarodnaia nauchnoprakticheskaia konferentciia «Nauchnoe izdanie mezhdunarodnogo urovnia: mirovy`e tendentcii i natcional`ny`e prioritety`», g. Moskva; 24–27 maia 2021 g. URL: https://rassep.ru/academy/biblioteka/106130/ (дата обращения: 11.11.2025).

4. Patwardhan B., Nagarkar Sh., Gadre Sh., Lakhotia S., Katoch V., Moher D. A Critical Analysis of the ‘UGC-Approved List of Journals’ // Current science. 2018; 114 (6): 1299–1303. DOI 10.18520/cs/v114/i06/1299-1303.

5. Singh J. Indian LIS Journal: Current Status and Scenario as seen through UGC CARE List in the year 2019-2020. 2023. DOI 10.1729/Journal.36020.

6. Kochetkov D. M. Bely`i` spisok rossii`skikh zhurnalov: voprosy`, zhdushchie otveta // Nauchny`i` redaktor i izdatel`. 2022. T. 7, № 2. S. 185–190.

7. Gorelkin V. A. Reglamentatciia izdaniia nauchny`kh zhurnalov v Rossii: problemy` i predlozheniia // Nauchny`i` redaktor i izdatel`. 2022. T. 7, № S1. S. 6–15.

8. Polilova T. A. Rei`tingi bibliograficheskoi` bazy` i «bely`e spiski» // E`lektronny`e biblioteki. 2022. T. 25, № 6. S. 640–670.

9. «Bely`i` spisok» zhurnalov na veb-sai`te Rossii`skogo centra nauchnoi` informatcii. URL: https://journalrank.rcsi.science/ru (data obrashcheniia: 11.11.2025).

10. Skien S. Nauka o danny`kh: uchebny`i` kurs / per. s angl. Sankt-Peterburg : OOO «Dialektika», 2020. 544 s.

11. De`vi S. Osnovy` Data Science i Big Data. Python i nauka o danny`kh. Sankt-Peterburg : Peter, 2017. 336 s.

12. Bakanova N. B. Analiz danny`kh publikatcionnoi` aktivnosti dlia issledovaniia napravlenii` nauchnogo sotrudnichestva organizatcii // Nauchny`e i tekhnicheskie biblioteki. 2024. № 11. S. 31–47.

13. Bakanova N. B. Mnogokriterial`naia ocenka publikatcionnoi` rezul`tativnosti nauchny`kh podrazdelenii` organizatcii // Iskusstvenny`i` intellekt i priniatie reshenii`. 2022. № 3. S. 88–95. DOI 10.14357/20718594220307.

14. Zaharova S. S. Bibliometricheskaia analitika v rezul`tatakh nauchny`kh razrabotok // NTI- 2022. Nauchnaia informatciia v sovremennom mire: global`ny`e vy`zovy` i prioritety` e`konomiki. Moskva : Vserossii`skii` institut nauchnoi` i tekhnicheskoi` informatcii RAN, 2022. S. 430–433. DOI 10.36535/2022-9785945770829-74.

15. Pessin V., Vilker L., Yamane L., Siman R. Smart bibliometrics: an integrated method of science mapping and bibliometric analysis. Scientometrics. 2022. No. 127. DOI 10.1007/s11192-022-04406-6.

16. Maliha H. A Review on Bibliometric Application Software. Sci. Lett. 2023. No. 1. DOI 10.58968/sl.v1i1.458.

17. Moral-Muñoz J. A., Herrera-Viedma E., Santisteban-Espejo A., Cobo M. J. Software tools for conducting bibliometric analysis in science: An up-to-date review. El profesional de la información. 2020. v. 29, No. 1, e290103. DOI 10.3145/epi.2020.ene.03.

18. Pessin V., Vilker L., Yamane L., Siman R. Smart bibliometrics: an integrated method of science mapping and bibliometric analysis. Scientometrics. 2022. No. 127. DOI 10.1007/s11192-022-04406-6.

19. Tan C. N.-L., Fauzi M. The bibliometric overview of research on healthcare information systems using big data analytics. International Journal of Data Science and Big Data Analytics. 2023. No. 3. Pp. 45–57. DOI 10.51483/IJDSBDA.3.1.2023.45-57.

20. Rivest M., Vignola-Gagné E., Archambault É. Article-level classification of scientific publications: A comparison of deep learning, direct citation and bibliographic coupling. PLOS ONE. 2021. No. 16. e0251493. DOI 10.1371/journal.pone.0251493.

21. Rao A. S., Vardhan B. V., Shaik H. Role of Exploratory Data Analysis in Data Science. Proc. 6th Int. Conf. Commun. Electron. Syst. ICCES 2021. 2021. No. 7. Pp. 1457–1461. DOI 10.1109/ICCES51350.2021.9488986.

22. 22. Prakticheskaia statistika dlia spetcialistov Data Science / per. s angl. P. Brius, E`. Brius, P. Gedek. 2-e izd., pererab. i dop. Sankt-Peterburg : BKHV-Peterburg, 2021. 352 s.

23. 23. MakKinni U. Python i analiz danny`kh: Pervichnaia obrabotka danny`kh s primeneniem Pandas, NumPy i Jupiter / per. s angl. A. A. Slinkina. 3-e izd. Moskva : MK Press, 2023. 536 s.

24. Simangunsong J., Simanjuntak M., Simanjuntak N. Mental disorder classification with exploratory data analysis (EDA). Journal of Intelligent Decision Support System (IDSS). 2024. No. 7. Pp. 210–217. DOI 10.35335/idss.v7i3.252.

25. Karunia R., Hidayati N. Analisis Data dan Visualisasi Pola Ancaman Siber Global (2015– 2024) menggunakan Exploratory Data Analysis (EDA). Dinamik. 2025. No. 30. Pp. 203–211. DOI: 10.35315/dinamik.v30i2.10136.


Review

For citations:


Moiseeva N.A. Application of Exploratory Data Analysis in bibliometrics: A case study of scientific journals on the “White List”. Scientific and Technical Libraries. 2025;1(11):182-202. (In Russ.) https://doi.org/10.33186/1027-3689-2025-11-182-202

Views: 23


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1027-3689 (Print)
ISSN 2686-8601 (Online)