Preview

Scientific and Technical Libraries

Advanced search

On the approach to the analysis of research vectors as the case study of Microbiology subject area

https://doi.org/10.33186/1027-3689-2020-12-83-98

Abstract

It is very important to identify the most developing research areas. The analysis of terminology dynamics, as exemplified by microbiology, enables to make conclusions on the current changes within the corresponding branch of science. The terminological dynamics of the most cited publications demonstrates high relevance of research findings demanded by scientific community. As exemplified by our Microbiology subject index, we introduce the method of identification of the most developing research problems based on key words frequency distribution. We suggest that the share of unique topic-oriented key words in the articles which belong to the same topic-oriented group is a variable that correlates with the range of research studies, methods, and the diversity of microorganisms: the greater is the number of these words, the greater diversity of topics is comprised by scientific papers in the field. Within this study, the group of papers falling under the heading of Genetics of yeasts and microfungi is leading in the number of papers with the number of topic-oriented key words amounting to 83%. Soil microbiology, Geomicrobiology, Pathogen-host interactions, and Bacterial Genetics also belong to the most developing topics.

About the Authors

V. A. Tsvetkova
RAS Library for Natural Sciences; Moscow State Institute of Culture
Russian Federation

Valentina A. Tsvetkova – Dr. Sc. (Engineering), Professor, Chief Researcher; Professor

Moscow



Yu. V. Mokhnacheva
RAS Library for Natural Sciences
Russian Federation

Yuliya V. Mokhnacheva – Cand. Sc. (Pedagogy), Head, Scientomertical Studies Department, Leading Researcher

Moscow



T. N. Kharybina
RAS Library for Natural Sciences
Russian Federation

Tatyana N. Kharybina – Department Head, Pushchino Research Center Library, Senior Researcher

Moscow



E. V. Beskaravainaya
RAS Library for Natural Sciences
Russian Federation

Elena V. Beskaravainaya – Senior Researcher

Moscow



I. A. Mitroshin
RAS Library for Natural Sciences
Russian Federation

Ivan A. Mitroshin – Senior Researcher

Moscow



References

1. Putin V. V. Poslanie Prezidenta Federalnomu Sobraniyu. 15.01.2020 // Ofitsialnyy sayt Prezidenta Rossii. – URL: http://kremlin.ru/events/president/news/62582.

2. Natsionalnyy proekt «Nauka» (2019–2024 gg.). Utverzhden Prezidiumom Soveta pri Prezidente RF po strategicheskomu razvitiyu i natsionalnym proektam – Protokol ot 24 dek. 2018 g. (№ 16). – URL: www.consultant.ru/document//cons_doc_LAW_31304/.

3. Bremmer I. The End of the American Order: Ian Bremmer speech at 2019 GZERO Summit. 18.11.2019 Eurasia Group. – URL: https://www.eurasiagroup.net/live-post/end-of-american-order-ian-bremmer-2019-gzero-summit-speec.

4. Ukaz Prezidenta RF ot 10 oktyabrya 2019 g. № 490 «O razvitii iskusstvennogo intellekta v Rossiyskoy Federatsii» (vmeste s «Natsionalnoy strategiey razvitiya iskusstvennogo intellekta na period do 2030 goda». – URL: http://consultant.ru>document/.

5. Subbotin M. M. O logiko-smyslovom modelirovanii soderzhaniya upravlencheskih resheniy // Nauch. upr. o-vom. — 1980. — Vyp. 13. – S. 203 – 224.

6. Shteynberg V. E. Logiko-smyslovye modeli i poznavatelnaya samostoyatelnost // Istoriya. – 2014. – № 11 (35). – S. 2–5. – URL://www.docviewer.yandex.ru.

7. Pavlovska E. Yu. Metody bibliometricheskogo analiza nauchnyh publikatsiy. – URL: www.gpntb.ru/win/inter-evants/073.pdf.

8. Sysoev A. N., Tsvetkova V. A., Tyutyunova V. S. Leengvisticheskie metody analiza dannyh v zadachah naukometrii // NTI. Ser. 1. – 2018. – № 9. – S. 22–27.

9. Tsvetkova A. V., Harybina T. N., Mohnacheva Yu. V., Beskaravaynaya E. V., Mitroshina I. Yu. Osobennosti sovmeshcheniya klassifikatsionnyh sistem i formirovaniya massiva klyuchevyh slov dlya opredeleniya prostranstva znaniy po Mikrobiologii // Nauch. i tehn. b-ki. – 2019. – № 11. – S. 25–43. – URL: https://doi.org/10.33186/1027-3689-2019-11-25-43.

10. Tsvetkova V. A., Mohnacheva Yu. V., Harybina T. N., Beskaravaynaya E. V., Mitroshin I. A. Prostranstvo znaniy: podhody k izvlecheniyu znaniy iz nauchnyh tekstov // Inform. resursy Rossii. – 2019. – № 2. – S. 31–34.

11. Antopolskiy A. B., Beloozerov V. N., Markarova E. S. O razrabotke ontologii na osnove klassifikatorov nauchnoy informatsii i terminologicheskih slovarey // Inform. resursy Rossii. – 2017. – № 5 (159). – S. 2–7.

12. Mengyang Wang, Lihe Chai. Three new bibliometric indicators/approaches derived from keyword analysis // Scientometrics. – 2018. – V. 116. – P. 721–750. – URL: https://doi.org/10.1007/s11192-018-2768-9.


Review

For citations:


Tsvetkova V.A., Mokhnacheva Yu.V., Kharybina T.N., Beskaravainaya E.V., Mitroshin I.A. On the approach to the analysis of research vectors as the case study of Microbiology subject area. Scientific and Technical Libraries. 2020;(12):83-98. (In Russ.) https://doi.org/10.33186/1027-3689-2020-12-83-98

Views: 559


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1027-3689 (Print)
ISSN 2686-8601 (Online)