Challenges to develop scientometric studies
https://doi.org/10.33186/1027-3689-2023-2-37-58
Abstract
The authors examine the key problems inhibiting scientometric studies and scientific communications. These challenges call for significant efforts and professional courage. Firstly, this is the need for open access to scientometric data and improvement of their quality and comprehensiveness, including author data, affiliations, citations and meta information. The authors emphasize the necessity for large-scale introduction of technologies for identifying objects of science information (i. e. publications, researchers, organizations, projects, etc.), which would enable to decrease significantly the number of bibliographic mistakes.
When projecting scientometric studies, the edge of objects and analysis instruments have to be defined by the goals rather than by bibliometric database limitations. Indexing of scientific publications is among the key instruments. Its advancement is determined by emerging and low-quality classifications of bibliometric databases, their differences, and changing science structure. Finally, the propriety of scientometric methods and results interpretation, in particular that of scientometric performance assessment, have to be controlled. Meeting these challenges will enable to provide efficient monitoring of scientific activity based on operative collection, processing and analysis of scientific information flows rather than on annual statistical surveys. This transfer would improve monitoring significantly and expand the spectrum of solutions; it would also enable to reveal system changes in research, to respond to disparities in development, and to make the solutions in science management more efficient.
Keywords
About the Authors
A. E. GuskovRussian Federation
Andrey E. Guskov – Cand. Sc. (Engineering), Head, Laboratory for Scientometrics and Scholarly Communications, Russian Research Institute of Economics, Politics and Law in Science and Technology.
Moscow
Ya. L. Shrayberg
Russian Federation
Yakov L. Shrayberg – Dr. Sc. (Engineering), Professor, Corresponding Member of Russian Academy of Education; Director of Research, Russian National Public Library for Science and Technology, Editor-in-Chief, “Scientific and Technical Libraries” Journal; Head, Department for Electronic Libraries and Scientometric Studies, Moscow State Linguistic University.
Moscow
References
1. Zaharchuk T. V., Gruzova A. A. Nauchnaia kommunikatciia v bibliotechno-informatcionnoi` sfere // Nauchny`e i tekhnicheskie biblioteki. 2021. № 3. S. 71–94. doi: 10.33186/1027-3689-2021-3-71-94
2. Kononova E. V., Sukiasian E`. R. Publikatcii classifikatcionny`kh sistem v internete: osobennosti predstavleniia i ispol`zovaniia // Nauchny`e i tekhnicheskie biblioteki. 2021. № 2. S. 91–100. doi: 10.33186/1027–3689-2021-2-91-100
3. Volkova N. A., Hodanovich M. A. Classifikatciia gumanitarnogo znaniia v BBK: sostoianie i perspektivy` // Nauchny`e i tekhnicheskie biblioteki. 2021. № 3. S. 31–42. doi: 10.33186/1027-3689-2021-3-31-42
4. LC Bibliographic Framework Initiative Update Forum : presentation at Amer. Libr. Assoc. Midwinter conf. (Seattle, Jan. 27, 2013). 2013. URL: https://www.loc.gov/item/webcast-5789/ (data obrashcheniia: 12.08.2021 г.).
5. Van de Sompel H., Beit-Arie O. Open Linking in the Scholarly Information Environment Using the OpenURL Framework // D-Lib Magazine. 2001. Vol. 7. № 3.
6. Lutai` A. V., Liubushko E. E`. Sravnenie kachestva metadanny`kh v BD CrossRef, Lens, OpenAlex, Scopus, Semantic Scholar, Web of Science Core Collection. URL: https://podpiska.rfbr.ru/storage/reports2021/2022_meta_quality.html (data obrashcheniia: 18.01.2023).
7. Visser M., Van Eck N. J., Waltman L. Large-scale comparison of bibliographic data sources: Scopus, Web of Science, Dimensions, Crossref, and Microsoft Academic // Quantitative Science Studies. 2021. Vol. 2. № 1. P. 20–41.
8. Lapochkina V. V., Dolgova V. N., Dikusar K. S., Bogatov V. V. Metodicheskii` podhod k ocenke tcitiruemosti nauchny`kh statei` rossii`skikh zhurnalov v razreze oblastei` nauki po danny`m Web of Science Core Collection. Chast` 1 // Nauchny`e i tekhnicheskie biblioteki. 2021. № 4. S. 53–72. doi:10.33186/1027-3689-2021-4-53-72
9. Lapochkina V. V., Dolgova V. N., Dikusar K. S., Bogatov V. V. Metodicheskii` podhod k ocenke tcitiruemosti nauchny`kh statei` rossii`skikh zhurnalov v razreze oblastei` nauki po danny`m Web of Science Core Collection. Chast` 2 // Nauchny`e i tekhnicheskie biblioteki. 2021. № 5. S. 73–89. doi: 10.33186/1027-3689-2021-5-73-98
10. Mazov N. A., Gureev V. N. The role of unique identifiers in bibliographic information systems // Sci. Tech.Inf. Proc. 2014. Vol. 41. № 3. P. 206–210.
11. Haak L. L. et al. ORCID: a system to uniquely identify researchers // Learn. Pub. 2012. Vol. 25. № 4. P. 259–264.
12. Selivanova I. V. i dr. Vliianie oshibok v baze danny`kh Scopus na ocenku rezul`tativnosti nauchny`kh issledovanii` // Nauchno-tekhnicheskaia informatciia. Seriia 1: Organizatciia i metodika informatcionnoi` raboty`. 2019. № 9. P. 25–32.
13. Sokolov M. M., Titaev K. D. Provintcial`naia i tuzemnaia nauka // Antropologicheskii` forum. 2013. № 19. C. 239–275.
14. Eremenko T. V. Ocenka mezhdunarodnoi` nauchnoi` aktivnosti v sfere bibliotekovedcheskikh issledovanii` (2011–2020 gg.) na osnove onlai`n-platformy` SciVal // Nauchny`e i tekhnicheskie biblioteki. 2022. № 1. S. 35–56. doi: 10.33186/1027-3689-2022-1-35-56.
15. Van Eck N. J., Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping // Scientometrics. 2010. Vol. 84. № 2. P. 523–538.
16. Chen C. Science Mapping: A Systematic Review of the Literature // Journal of Data and Information Science. 2017. Vol. 2. № 2. P. 1–40.
17. Sterligov I. A. Rossii`skii` konferentcionny`i` vzry`v: masshtaby`, prichiny`, dal`nei`shie dei`stviia. Upravlenie naukoi`: teoriia i praktika. URL: https://cyberleninka.ru/article/n/rossiyskiy-konferentsionnyy-vzryv-masshtaby-prichiny-dalneyshie-deystviya (data obrashcheniia: 18.01.2023).
18. Vanecek J., Pecha O. Fast growth of the number of proceedings papers in atypical fields in the Czech Republic is a likely consequence of the national performance-based research funding system: 3 // Research Evaluation. 2020. Vol. 29. № 3. P. 245–262.
19. Purnell P. J. Conference proceedings publications in bibliographic databases: a case study of countries in Southeast Asia // Scientometrics. 2021. Vol. 126. № 1. P. 355–387.
20. Bladek M. DORA: San Francisco Declaration on Research Assessment (May 2013) // College and Research Libraries News. 2014. Vol. 75. № 4. P. 191–196.
21. Hicks D. et al. Leiden manifesto for research Metrics // Leiden manifesto for research Metrics. URL: http://www.leidenmanifesto.org/ (data obrashcheniia: 29.06.2021).
22. Gus`kov A. E., Kosiakov D. V. Problemy` monitoringa nauchny`kh kadrov // Trudy` GPNTB SO RAN. 2019. № 1. S. 55–61.
23. Hicks D. Performance-based university research funding systems // Research Policy. 2012. Vol. 41. № 2. P. 251–261.
24. Guskov A., Kosyakov D., Selivanova I. Scientometric research in Russia: impact of science policy changes // Scientometrics. 2016. Vol. 107. № 1. P. 287–303.
25. Tcvetkova V. A., Mokhnacheva Iu. V. Rossii`skaia nauka i rossii`skoe knigoizdanie v tcifrakh i bibliometricheskikh ocenkakh // Nauchny`e i tekhnicheskie biblioteki. 2022. № 11. S. 29–56.
Review
For citations:
Guskov A.E., Shrayberg Ya.L. Challenges to develop scientometric studies. Scientific and Technical Libraries. 2023;(2):37-58. (In Russ.) https://doi.org/10.33186/1027-3689-2023-2-37-58