Preview

Scientific and Technical Libraries

Advanced search

Application of the big language model – ChatGPT in the librarianship and bibliographical work

https://doi.org/10.33186/1027-3689-2024-4-86-108

Abstract

Based on the conducted research, the possibilities of applying the artificial intelligence system ChatGPT to enhance and automate traditional library and bibliographic processes such as acquisition, cataloging, indexing, and reference services are considered. The methodology is based on evaluating the language model's capabilities in the context of these processes and provides detailed recommendations for the effective use of ChatGPT in library practice. The authors describe the ChatGPT existent information), differences in the accuracy of AI system responses across different languages, and the lack of real-time information updates. Methods for addressing potential issues associated with these limitations are proposed. Additionally, general recommendations for formulating queries are provided to maximize the effective utilization of ChatGPT in library practice. The importance of fact-checking to verify the accuracy of information obtained from the language model is emphasized. Recommendations are developed to optimize and automate acquisition, cataloging, indexing, and reference services processes. The authors conclude that ChatGPT can become a powerful tool in library work and has significant potential to improve and streamline traditional processes.

About the Authors

V. K. Stepanov
Moscow State Linguistic University; Institute for Scientific Information on Social Sciences, Russian Academy of Sciences
Russian Federation

Vadim K. Stepanov – Cand. Sc. (Pedagogy), Associate Professor, Senior Reseacher; Associate Professor

Moscow



M. S. Madzhumder
Moscow State Linguistic University
Russian Federation

Madina S. Madzhumder – student, Information Analytics Chair

Moscow

   


D. D. Begunova
Moscow State Linguistic University
Russian Federation

Diana D. Begunova – student, Information Analytics Chair

Moscow

   


References

1. Introducing ChatGPT // OpenAI. URL: https://openai.com/blog/chatgpt (access date: 28.04.2023).

2. Language Models are Few-Shot Learners / T. B. Brown, B. Mann, N. Ryder [и др.] // arXiv e-prints. 2020. 75 с. URL: https://arxiv.org/pdf/2005.14165.pdf (access date: 14.05.2023).

3. GPT-4 Technical Report / OpenAI // arXiv e-prints. 2023. 100 с. URL: https://arxiv.org/pdf/2303.08774.pdf (access date: 28.04.2023).

4. ChatGPT plugins // OpenAI. URL: https://openai.com/blog/chatgpt-plugins?fbclid=IwAR11LXJHiGoMARnWAOWj7zF3fMagXKjkFgNiKBBWVy1A42JDFKfDTB5xzj U (access date: 29.04.2023).

5. Kak pol`zovat`sia ChatGPT v Rossii? // Tin`koff zhurnal. URL: https://journal.tinkoff.ru/chatgpt-in-russia/ (data obrashcheniia: 10.07.2023).

6. Kak poluchit` dostup k ChatGPT v Rossii // Skillbox. URL: https://skillbox.ru/media/code/kak-poluchit-dostup-k-chatgpt-v-rossii-a-takzhe-belarusiirane-i-vezde-gde-on-zakryt/ (data obrashcheniia: 10.07.2023).

7. Generative Language Models and Automated Influence Operations: Emerging Threats and Potential Mitigations / J. A. Goldstein, G. Sastry, M. Musser [и др.] // arXiv e-prints. 2023. 82 с. URL: https://arxiv.org/pdf/2301.04246.pdf (access date: 02.05.2023).

8. Mantzarlis А. Fact-checking 101 // Journalism, “Fake News” & Disinformation. 2018. С. 81–95. URL: https://en.unesco.org/sites/default/files/module_5.pdf (access date: 10.07.2023).

9. Hahn M., Goyal N. Theory of Emergent In-Context Learning as Implicit Structure Induction // arXiv e-prints. 2023. 69 с. URL: https://arxiv.org/pdf/2303.07971.pdf (access date: 14.05.2023).

10. ChatGPT Shared Links FAQ // Help OpenAI. URL: https://help.openai.com/en/articles/7925741-chatgpt-shared-links-faq (access date: 06.06.2023).

11. PALM2 // Google AI. URL: https://ai.google/discover/palm2/ (access date: 12.07.2023).

12. An Empirical Analysis of Compute-optimal Large Language Model Training // Google DeepMind. URL: https://www.deepmind.com/publications/an-empirical-analysis-ofcompute-optimal-large-language-model-training (access date: 12.07.2023).

13. BLOOM // Hugging Face. URL: https://huggingface.co/docs/transformers/model_doc/bloom (access date: 12.07.2023).

14. YandexGPT v Alise: kak my` sozdayom iazy`kovuiu model` novogo pokoleniia // Хабр. URL: https://habr.com/ru/companies/yandex/articles/739626/ (data obrashcheniia: 12.07.2023).

15. GigaChat – nei`rosetevaia model` ot Sbera na russkom iazy`ke // Vitrina tekhnologii` Sbera dlia razrabotchikov. URL: https://developers.sber.ru/ (data obrashcheniia: 12.07.2023).


Review

For citations:


Stepanov V.K., Madzhumder M.S., Begunova D.D. Application of the big language model – ChatGPT in the librarianship and bibliographical work. Scientific and Technical Libraries. 2024;(4):86-108. (In Russ.) https://doi.org/10.33186/1027-3689-2024-4-86-108

Views: 2213


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1027-3689 (Print)
ISSN 2686-8601 (Online)