Russian publications in library and information sciences in Scopus
https://doi.org/10.33186/1027-3689-2022-3-14-38
Abstract
The authors applied the approach based on the dynamics of key terms in library and information studies. The authors analyzed the Russian segment of publications in the area to identify the fastest growing themes applying the terminology approach and revealing specific use of key terms in Scopus database based on SciVal. They selected 2000–2020 Scopus array of Russian publications in library and information sciences. The methods comprised: using WoS CC to select publications in the advanced search mode, classifying publications by author and author ranking; further, search by identified WoS CC authors was accomplished; their ratio and ranking in SciVal themes was derived. The themes with the most used terms were selected. The hypothesis was suggested: the more keywords with the dynamics > 0% are used in the theme, the higher the probability is that this theme is a promising and growing one, and the more key terms with the negative dynamics, the more probable is that the research interest toward the topic is decreasing. Three most prospective themes for Russian studies in library and information disciplines were identified, namely: “Intellectual Structure; Co-citation Analysis; Scientometrics”, “Hirsch Index; Self-Citation; Journal Impact Factor”, “Co-Authorship; Scientific Collaboration; Scientometrics”.
About the Authors
Yu. V. MokhnachevaRussian Federation
Yulia V. Mokhnacheva – Cand. Sc. (Pedagogy), Head, Department for Scientometric Studies
Moscow
V. A. Tsvetkova
Russian Federation
Valentina A. Tsvetkova – Dr. Sc. (Engineering), Prof., Chief Researcher, Library for Natural Sciences of the Russian Academy of Sciences; Professor, Moscow State Institute of Culture
Moscow; Khimki, Moscow Region
References
1. Lugya F. K. What counts as a science and discipline in library and information science? // Library Review. 2014. V. 63. № 1–2. P. 138–155. http://dx.doi.org/10.1108/LR-08-2013-0103.
2. Wang X. G., Cheng Q. K., Lu W. Analyzing evolution of research topics with NEViewer: a new method based on dynamic co-word networks // Scientometrics. 2014. Vol. 101. P. 1253–1271. https://doi.org/10.1007/s11192-014-1347-y.
3. Yarygina E. 15 novyh napravleniy sovremennoy nauki [Elektronnyy resurs] // Nauchnaya Rossiya. 11 aprelya 2013. URL: https://scientificrussia.ru/articles/newextraordinary-science (data obrashcheniya: 28.09.2021).
4. Zuykova A. Eto proryv: desyat samyh vazhnyh tehnologiy 2021 goda [Elektronnyy resurs]. URL: https://trends.rbc.ru/trends/innovation/606ecf189a79470e64285ce2 (data obrashcheniya: 28.09.2021).
5. Chto interesnogo proizoshlo v nauke za 2020 god [Elektronnyy resurs]. URL: https:/tjournal.ru/science/275267-chto-intesnogo-proizoshlo-v-nauke-za-2020-god (data obrashcheniya: 19.09.2021).
6. Kontostathis A., Galitsky L., Pottenger W. M., Roy S., Phelps D. J. A survey of emerging trend detection in textual data mining // A comprehensive survey of text mining / M. Berry (Ed.). Heidelberg : Springer, 2004. P. 185–224.
7. Mokhnacheva Yu. V., Tsvetkova V. A. Development of Research Topics Based on the Terminological Approach (for Example, Immunology and Microbiology According to Scopus – SciVal Data) // Scientific and Technical Information Processing. 2021. V. 48. № 2. P. 139–145. https://doi.org/10.3103/S0147688221020106.
8. Tsvetkova V. A., Kalenov N. E., Sotneykov A. N., Harybina T. N. Struktura podprostranstva «Mikrobiologiya» edinogo tsifrovogo prostranstva nauchnyh znaniy // Nauchnotehnicheskaya informatsiya. Ser. 1. 2020. № 11. S. 35–40. https://doi.org/10.36535/0548-0019-2020-11-4.
9. Tsvetkova V. A., Kalenov N. E., Mohnacheva Yu. V., Mitroshin I. A. Predmetnaya ontologiya edinogo tsifrovogo prostranstva nauchnyh znaniy kak istochnik naukometricheskih issledovaniy // Informatsionnye resursy Rossii. 2020. № 5. S. 47–49.
10. Wanjun Xia, Yanping Jiang, Weifeng Zhu, Shuang Zhang, Tianrui Li. Research Fronts of Computer Science: A Scientometric Analysis // Journal of Scientometric Res. 2021. V. 10. № 1. P. 18–26. http://doi.org/10.5530/jscires.10.1.3.
11. Cui Y., Wang S., Gao X., Yang H., Cao X. Detecting and Characterizing Research Fronts Topics Based on Global-Micro Model // Library and Information Service. 2018. V. 62. N 15. P. 75–82. https://doi.org/10.1145/3421766.3421799.
12. Roche I., Besagni D., Francois C., Horlesberger M., Schiebel E. Identification and characterisation of technological topics in the field of Molecular Biology // Scientometrics. 2010. Vol. 82. № 3. P. 663–676. http://doi.org/10.1007/s11192-010-0178-8.
13. Sedighi M. Application of word co-occurrence analysis method in mapping of the scientific fields (case study: the field of Informetrics) // Library Review. 2016. V. 65. № 1–2. С. 52–641. https://doi.org/10.1108/LR-07-2015-0075.
14. Hsiao T. M., Chen Kh. The dynamics of research subfields for library and information science: an investigation based on word bibliographic coupling // Scientometrics. 2020. V. 125. P. 717–737. https://doi.org/10.1007/s11192-020-03645-9.
15. Zhao D. The Knowledge Base and Research Front of Information Science 2006– 2010: An Author Cocitation and Bibliographic Coupling Analysis // Journal of the Association for Information Science and Technology. 2014. V. 65. № 5. P. 995–1006. https://doi.org/10.1002/asi.23027.
16. Onyancha O. B. Forty-Five Years of LIS Research Evolution, 1971–2015: An Informetrics Study of the Author-Supplied Keywords // Publishing Research Quarterly. 2018. V. 34. P. 456–470. https://doi.org/10.1007/s12109-018-9590-3.
17. Cheng Q. K., Wang J. M., Lu W., Huang Y., Bu Y. Keyword‑citation‑keyword network: a new perspective of discipline knowledge structure analysis // Scientometrics. 2020. Vol. 124. P. 1923–1943. http://doi.org/10.1007/s11192-020-03576-5.
18. Small H., Boyack K. W., Klavans R. Identifying emerging topics in science and technology // Research Policy. 2014. Vol. 43. № 8. P. 1450–1467. https://doi.org/10.1016/j.respol.2014.02.005.
19. Chen C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature // Journal of the American Society for Information Science and Technology. 2005. Vol. 57. № 3. P. 359–377. https://doi.org/10.1002/asi.20317.
20. Sysoev A. N., Tsvetkova V. A., Tyutyunova V. S. Leengvisticheskie metody analiza dannyh v zadachah naukometrii // Nauchno-tehnicheskaya informatsiya. Ser. 1: Organizatsiya i metodika informatsionnoy raboty. 2018. № 9. S. 22–27.
21. Antopolskiy A. B., Savchuk S. O., Tameev A. A. O razrabotke ontologii poiskovyh terminov po lingvistike // Informatsionnye resursy Rossii. 2020. № 4 (176). S. 2–7.
Review
For citations:
Mokhnacheva Yu.V., Tsvetkova V.A. Russian publications in library and information sciences in Scopus. Scientific and Technical Libraries. 2022;(3):14-38. (In Russ.) https://doi.org/10.33186/1027-3689-2022-3-14-38